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How to Study Graphs?

Subgraph Mining
+ Extract statistically significant patterns
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How to Study Graphs?

Subgraph Mining

+ Extract statistically significant patterns

Graph Representation Learning
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A Brief History of Recent Graph Models
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A Brief History of Recent Graph Models
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A Brief History of Recent Graph Models

2016
2007 GraphAE
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A Fork in the Road

Thesis Statement

Scalably and methodically extracting graph grammar rules provide
a unique insight into understanding the inner workings of real-world
graphs. Furthermore, these rules can generate accurate copies of
the input, allowing for highly interpretable models.

Analyzing the performance of graph models undergoing a stress
test reveals and amplifies the latent biases and sheds new light on
their inner workings.
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The Big Picture

Studying Complex Systems

+ Discovering the building blocks

+ Figuring how the pieces fit together

Formalism
+ String grammars for natural language processing

¢ Graph grammars for graph mining

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction
Definitions
Graph Models

Overview

Graph Grammars
Grammar Extraction
Graph Generation
Infinity Mirror Test

Wrapping Up



String Grammars
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Clustering-based Node Replacement Grammar Extractor
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Key Idea
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+ Confirms previously known biases in Kronecker graphs

+ Uncovers unique distortion patterns in popular graph models
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+ Confirms previously known biases in Kronecker graphs
+ Uncovers unique distortion patterns in popular graph models

+ Atool to design better, more parsimonious models
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Summary

Vertex Replacement Grammars

+ A new class of scalable, interpretable graph models

¢+ Preserves both topology and attribute similarities
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Summary

Vertex Replacement Grammars

+ A new class of scalable, interpretable graph models

¢+ Preserves both topology and attribute similarities

Infinity Mirror Test

+ A novel stress-test for graph models

+ Reveals new biases prompting further investigation
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What's Next

Hypergraph Grammars
+ New extraction method for HRGs bypassing tree decompositions

+ Should improve both stability and scalability

h—,

hs—

Line Graph of H

Hypergraph H
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Infinity Mirror Test

Wrapping Up
+ Work with Santo Fortunato on the MINERVA project o
¢ Understanding the process of scientific discovery

+ Studying the dynamics of citation and collaboration networks
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Minimum Description Length Principle

The Core Idea

+ The best model is the one that leads to the best compression

M* =argmin{ LM)+ L(D|M) }

¢+ L(M) is the length of the model
+ L(D| M) is the length of data compressed by the model
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Kemp-Tenenbaum (KT) Graph Grammars

LHS RHS
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(A) A KT grammar rule
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Bottom-up Graph Grammar Extraction (BUGGE)
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Results from Synthetic Graphs
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Most Frequent Rules Extracted from a PPl Network
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CNRG Results

EuCore PolBlogs OpenFlights

GCD \-dist GCD \-dist GCD A-dist
ChunglLu 0.409 0.803 | 0.466 1.234 1116 0.614
HRG 0.229 8.091 1196 4.407 | 1.2442 2.761
DC-SBM 0.180 2.057 | 0.262 4.186 | 0.8414 3.534
BTER - -1 0.352 7505 | 0.832 4.936
Kronecker 0.3164 11.802 | 1.302 14.31 1.83 10.459
CNRGE 0.233 4.969 | 0.212 4.276 | 0.2832  3.581
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CNRG Results

GrQc PGP Gnutella

GCD \-dist GCD \-dist | GCD \-dist
ChunglLu 2.657 0.389 2 064|102 0.42
HRG 1.99 4.41 = = 2 5
DC-SBM 2.065 2.202 1.39 2.29 - =
BTER 2.231 0.439 1.61 0.832 | 110 0.474
Kronecker  3.87 5.468 | 2.882 3.54 | 3.31 596
CNRGE 1.067 0.723 | 0.448 1.329 | 0.41 0.20
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