Scalable and Interpretable Graph Modeling with Graph Grammars

Satyaki Sikdar

Ph.D. Defense

Committee: Dr. Tim Weninger, Chair Dr. David Chiang · Dr. Peter Kogge · Dr. Danai Koutra

Scalable and
Interpretable Graph
Modeling with
Graph Graphers

bit.ly/satyaki-slides

Introduction

Definitions
Graph Models
Overview

String Grammars

Graph Grammars

Grammar Extraction

Graph Generation

Infinity Mirror Tes

Wrapping Up

Scalable and
Interpretable Graph
Modeling with
Graph Graphers

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extractior

Graph Generation

.. . ..

Scalable and
Interpretable Graph
Modeling with
Graph Graphers

bit.ly/satyaki-slides

Introduction

Definitions
Graph Models
Overview
String Grammars

Graph Grammars

Grammar Extraction

Graph Generation

Infinity Mirror Tes

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions
Graph Models
Overview

String Grammars

Graph Grammars

Grammar Extraction

Graph Generation

How to Study Graphs?

Subgraph Mining

• Extract statistically significant patterns

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Crammar Extraction

Graph Generation

official Advance To

How to Study Graphs?

Subgraph Mining

Extract statistically significant patterns

Graph Representation Learning

Learn low-dimensional embedding of nodes

bit.ly/satyaki-slides

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Graph Generative Models

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extractio

Fraph Generation

Wrapping Up

Graph Generative Models

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extraction

ranh Congration

finity Mirror Te

Wrapping Up

Graph Generative Models

Scalable and
Interpretable Graph
Modeling with
Graph Grapmars

bit.ly/satyaki-slides

ntroduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extractior

Graph Generation

- Horton & Alonson Total

Wrapping Up

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extraction

raph Generation

ofinity Mirror Test

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extraction

Graph Generation

milimita e balanca a Torak

Vrapping Up

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extraction

raph Generation

Infinity Mirror Toc

Mighbing Ob

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Granh Grammars

Grammar Extractio

Franh Generation

Infinity Mirror

Wrapping Up

Scalable and
Interpretable Graph
Modeling with
Graph Grapmars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extractio

Graph Generation

nfinity Mirror Te

Vrapping Up

A Fork in the Road

Thesis Statement

Scalably and methodically extracting graph grammar rules provide a unique insight into understanding the inner workings of real-world graphs. Furthermore, these rules can generate accurate copies of the input, allowing for highly interpretable models.

Analyzing the performance of graph models undergoing a stress test reveals and amplifies the latent biases and sheds new light on their inner workings.

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview String Grammars

.

Graph Grammars

Grammar Extraction

Graph Generation

official Advance To

Mrapping I In

A Fork in the Road

List of Publications

Synchronous Hyperedge Replacement Graph Grammars

Modeling Graphs with Vertex Replacement Grammars

Towards Interpretable Graph Modeling with Vertex Replacement Grammars

Joint Subgraph-to-Subgraph Transitions: Generalizing Triadic Closure for

Powerful and Interpretable Graph Modeling

The Infinity Mirror Test for Graph Models

Attributed Vertex Replacement Graph Grammars

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extraction

.....,

A Fork in the Road

List of Publications

Synchronous Hyperedge Replacement Graph Grammars

ICDM 19 Modeling Graphs with Vertex Replacement Grammars

Towards Interpretable Graph Modeling with Vertex Replacement Grammars

Joint Subgraph-to-Subgraph Transitions: Generalizing Triadic Closure for Powerful and Interpretable Graph Modeling

TKDE 21 The Infinity Mirror Test for Graph Models

WSDM 22* Attributed Vertex Replacement Graph Grammars

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extraction

Graph Generation

nfinity Mirror Te

The Big Picture

Studying Complex Systems

- Discovering the building blocks
- Figuring how the pieces fit together

Formalism

- String grammars for natural language processing
- Graph grammars for graph mining

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extractio

aph Generation

Wrapping Up

CFG Production Rules

- \bullet S \rightarrow NP VP
- NP \rightarrow the N
- \bullet VP \rightarrow V NP
- N \rightarrow cat | song
- ullet V ightarrow sings eats

Scalable and Iterpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extractio

Graph Generation

finity Mirror Te

CFG Production Rules

- ullet S \to NP VP
- NP \rightarrow the N
- \bullet VP \rightarrow V NP
- N \rightarrow cat | song
- \bullet V \rightarrow sings | eats

S

nterpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars
Graph Grammars

Grammar Extractio

Graph Generation

nfinity Mirror Te

CFG Production Rules

- ullet S \rightarrow NP VP
- NP \rightarrow the N
- \bullet VP \rightarrow V NP
- N \rightarrow cat | song
- \bullet V \rightarrow sings eats

S

nterpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

......

Graph Generation

.......

CFG Production Rules

- ullet S \to NP VP
- NP \rightarrow the N
- $VP \rightarrow VNP$
- N \rightarrow cat | song
- \bullet V ightarrow sings eats

 $s \Rightarrow NP VP$

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

introduction

Definitions

Graph Models

Overview

String Grammars

--**-**-----

Grammar Extraction

Graph Generation

nfinity Mirror Te

Wrapping Up

CFG Production Rules

- ullet S \to NP VP
- NP \rightarrow the N
- \bullet VP \rightarrow V NP
- N \rightarrow cat | song
- $V \rightarrow sings \mid eats$

 $S \Rightarrow NP VP \Rightarrow the N VP$

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

....

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extraction

Graph Generation

...

Wrapping Up

CFG Production Rules

- \bullet S \rightarrow NP VP
- NP \rightarrow the N
- \bullet VP \rightarrow V NP
- N \rightarrow cat | song
- $V \rightarrow sings | eats$

$$S \Rightarrow NP VP \Rightarrow the N VP \Rightarrow the cat VP$$

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extraction

Graph Generation

CFG Production Rules

- \bullet S \rightarrow NP VP
- NP \rightarrow the N
- \bullet VP \rightarrow V NP
- N \rightarrow cat | song
- \bullet V \rightarrow sings | eats

 $S \Rightarrow NP VP \Rightarrow the N VP \Rightarrow the cat VP \Rightarrow the cat V NP$

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Introduction

Definitions

Graph Models

Overview

String Grammars

Grammar Extraction

Graph Generation

CFG Production Rules

- \bullet S \rightarrow NP VP
- NP \rightarrow the N
- \bullet VP \rightarrow V NP
- N \rightarrow cat | song
- $V \rightarrow sings | eats$

S \Rightarrow NP VP \Rightarrow the N VP \Rightarrow the cat VP \Rightarrow the cat V NP \Rightarrow the cat sings NP

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extraction

Graph Generation

to Both the Advance To

CFG Production Rules

- \bullet S \rightarrow NP VP
- NP \rightarrow the N
- $VP \rightarrow VNP$
- N \rightarrow cat | song
- $V \rightarrow sings | eats$

S \Rightarrow NP VP \Rightarrow the N VP \Rightarrow the cat VP \Rightarrow the cat V NP \Rightarrow the cat sings NP \Rightarrow the cat sings the N

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extraction

Graph Generation

Infinity Mirror Toc

CFG Production Rules

- \bullet S \rightarrow NP VP
- NP \rightarrow the N
- \bullet VP \rightarrow V NP
- N \rightarrow cat | song
- ullet V ightarrow sings | eats

S \Rightarrow NP VP \Rightarrow the N VP \Rightarrow the cat VP \Rightarrow the cat V NP \Rightarrow the cat sings NP \Rightarrow the cat sings the N \Rightarrow the cat sings the song

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extraction

Graph Generation

Infinity Mirror Te

0

Scalable and nterpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

.

Overview

String Grammars

Graph.Grammars

Grammar Extraction

Graph Generation

Wrapping Up

NCE Production Rules

bit.ly/satyaki-slides

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extraction

Graph Generation

official Advance To

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

Introduction

inti oddetion

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Frammar Extraction

Graph Generation

nfinity Mirror Te

Wrapping Up

Scalable and nterpretable Graph Modeling with

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

. .

Graph Grammars

Frammar Extraction

Graph Generation

nfinity Mirror Te

Vrapping Up

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

Overview

String Grammars

Graph Grammars

Grammar Extraction

Graph Generation

nfinity Mirror Te

Wrapping Up

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

amananini

Grammar Extraction

Graph Generation

nfinity Mirror Tes

Vrapping Up

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

Introduction

miroduction

Definitions

Graph Models

Overview.

String Grammars

Graph Grammars

Grammar Extraction

Graph Generation

Infinity Mirror Tes

Wrapping Up

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extraction

Graph Generation

Infinity Mirror Te

Wrapping Up

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Crapii Concration

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extraction

Graph Generatior

- Harling & Alaman Ta

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview
String Grammars

Graph Grammars

Grammar Extraction

Graph Generation

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars Graph Grammars

Crammar Extraction

Graph Generation

Wranning I In

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extractior

Graph Generation

nfinity Mirror Te

Wrapping Up

Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars Graph Grammars

nfinity Mirror Te

Wrapping Up

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

3rammar Extraction

Graph Generation

ofinity Mirror Test

Wrapping Up

Scalable and
Interpretable Graph
Modeling with
Graph Grapmars

bit.ly/satyaki-slides

Introduction

Definitions

Graph Models

Overview

String Grammars

Graph Grammars

Grammar Extraction

Graph Generation

ofinity Mirror Tost

Wrapping Up

Hierarchical Graph Clustering

bit.ly/satyaki-slides

Motivation Rule Extraction Attributed Graphs

$$(\mu = 3)$$

Current Dendrogram ${\cal D}$

Current Graph H

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

ntroduction

Motivation
Rule Extraction

Attributed Graphs

Infinity Mirror Test

$$(\mu = 3)$$

Current Dendrogram $\mathcal D$

Current Graph H

Extracted NCE Rule

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

otroduction

vanaman Futi

Motivation
Rule Extraction

Attributed Graphs

Graph Generation

nfinity Mirror Test

Wrapping Up

Updated Dendrogram \mathcal{D}'

Updated Graph H'

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extract

Motivation

Rule Extraction

Attributed Graphs

Graph Generatio

nfinity Mirror Test

$$(\mu = 3)$$

Current Dendrogram \mathcal{D}

Current Graph H

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Frammar Extra

Motivation

Rule Extraction

Attributed Graphs

Graph Generation

Infinity Mirror Test

$$(\mu = 3)$$

a b f e

Current Dendrogram ${\cal D}$

Current Graph H

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

ntroduction

ici oddaetioii

_ ___

Motivation

Rule Extraction Attributed Graphs

Graph Generation

Infinity Mirror Tes

Wrapping Up

Updated Dendrogram \mathcal{D}'

 $(\mu = 3)$

Updated Graph H'

Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Rule Extraction

Motivation

Attributed Graphs

Graph Generation

Infinity Mirror Test

Current Dendrogram \mathcal{D}

Current Graph H

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Motivation

Rule Extraction

Attributed Graphs

Infinity Mirror Test

Current Dendrogram $\mathcal D$

Current Graph H

Extracted NCE Rule

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

.........

rammar Evti

Motivation
Rule Extraction

Attributed Graphs

Graph Generation

Infinity Mirror Tes

Wrapping Up

Updated Dendrogram \mathcal{D}'

Updated Graph H'

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Motivation

Rule Extraction
Attributed Graphs

Graph Generation

Infinity Mirror Test

Current Dendrogram \mathcal{D}

Current Graph H

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

rammar Extra

Motivation

Rule Extraction

Attributed Graphs

Graph Generatio

Infinity Mirror Test

 $(\mu = 3)$

Current Dendrogram \mathcal{D}

Current Graph H

bit.ly/satyaki-slides

Motivation Rule Extraction

Attributed Graphs

Infinity Mirror Test

Updated Dendrogram \mathcal{D}'

Updated Graph H'

Extracted NCE Rule

Infinity Mirror Test

bit.ly/satyaki-slides

Motivation Rule Extraction Attributed Graphs

$$(\mu = 3)$$

2 η_1 2

Current Dendrogram ${\cal D}$

Current Graph H

Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Motivation

Rule Extraction

Attributed Graphs

Graph Generation

Infinity Mirror Test

 $(\mu = 3)$

2 η_1 2

2 2

Current Dendrogram ${\mathcal D}$

Current Graph H

0 - 2 2

Extracted NCE Rule

Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

ntroduction

Motivation

Grammar Extraction

Rule Extraction

Attributed Graphs

Graph Generation

Infinity Mirror Test

Vrapping Up

$$(\mu = 3)$$

0

0

Updated Dendrogram \mathcal{D}

Updated Graph H

bit.ly/satyaki-slides

Motivation Rule Extraction Attributed Graphs

Infinity Mirror Test

$$(\mu = 3)$$

0

0

Updated Dendrogram \mathcal{D}

STOP

Updated Graph H

bit.ly/satyaki-slides

Motivation

Rule Extraction Attributed Graphs

Infinity Mirror Test

Extracted NCE Grammar

Dendrogram \mathcal{D}

Extracted NCE rules

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Motivation
Rule Extraction

Attributed Graphs

Graphi Generation

Infinity Mirror Test

Model Size Comparison

Scalable and
Interpretable Graph
Modeling with
Graph Graphers

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Motivation

Rule Extraction

Attributed Graphs

raph Generation

Infinity Mirror Test

Wrapping Up

Model Size Comparison

Scalable and
Interpretable Graph
Modeling with
Graph Graph Graph

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Motivation

Rule Extraction

Attributed Graphs

Graph Generation

Infinity Mirror Test

Wrapping Up

Attributed Graphs

Homophily in PolBooks graph

Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Motivation

Rule Extraction

Attributed Graphs

.......

nfinity Mirror Test

Attributed Graphs

Homophily in PolBooks graph

Heterophily in Texas CS website

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Crammar Eytra

Motivation

Rule Extraction

Attributed Graphs

Graph Generation

Infinity Mirror Test

Wrapping Up

Real-world Grammars: Cora

Node Distribution

Edge Mixing Matrix

bit.ly/satyaki-slides

Motivation

Rule Extraction Attributed Graphs

Infinity Mirror Test

Real-world Grammars: Cora

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

C------

Motivation

Rule Extraction

Attributed Graphs

Graph Generation

Infinity Mirror Test

Wrapping Up

Real-world Grammars: Chameleon

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extraction

Motivation

17%

Rule Extraction

Attributed Graphs

згари бенегацог

nfinity Mirror Test

Wrapping Up

Real-world Grammars: Chameleon

Interpretable Graph
Modeling with
Graph Graph

bit.ly/satyaki-slides

ntroduction

Motivation
Rule Extraction

Attributed Graphs

лари сенегацон

Infinity Mirror Test

Wrapping Up

Graph Grammar Pipeline Revisited

Scalable and
Interpretable Graph
Modeling with
Graph Graphars

bit.ly/satyaki-slides

ntroduction

Crammar Extractio

Motivation

Rule Extraction

Attributed Graphs

Graph Generation

Infinity Mirror Test

Wrapping Up

Attributed NCE Grammars

Extracted ANCE rules

bit.ly/satyaki-slides

Methodology Experimental Results Conclusions

Infinity Mirror Test

S

Current Graph H'

Next Graph \hat{H}

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extraction

Graph Generat

Conclusions

Methodology Experimental Results

Infinity Mirror Test

Wrapping Up

S

Current Graph H'

Next Graph \hat{H}

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extraction

Graph Generat

Methodology

Experimental Results

Conclusions

Infinity Mirror Test

Wrapping Up

29

Extracted ANCE Rule

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extraction

Graph Generat

Methodology

Experimental Results

Conclusions

Infinity Mirror Test

Wrapping Up

Current Graph H'

Next Graph \hat{H}

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extraction

Graph Generation

Methodology Experimental Results

Conclusions
Infinity Mirror Test

Wrapping Up

Extracted ANCE Rules

Extracted ANCE Rules

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extractio

Graph Generat

Conclusions

Methodology Experimental Results

Infinity Mirror Test

Wrapping Up

Extracted ANCE Rules

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Graph Generat

Conclusions

Methodology Experimental Results

Infinity Mirror Test

Wrapping Up

Current Graph H'

Next Graph Ĥ

bit.ly/satyaki-slides

Methodology Experimental Results Conclusions

Infinity Mirror Test

Extracted ANCE Rules

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Graph Generation

Methodology

Experimental Results

Conclusions

Infinity Mirror Test

Wrapping Up

Extracted ANCE Rules

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extraction

Graph Generati

Methodology

Experimental Results

Conclusions

Infinity Mirror Test

Wrapping Up

Extracted ANCE Rules

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Graph Generation

Methodology

Experimental Results

Conclusions

Infinity Mirror Test

Next Graph \hat{H}

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extraction

Graph Generation

Methodology

Experimental Results

Conclusions

Infinity Mirror Test

Wrapping Up

Extracted ANCE Rules

Extracted ANCE Rules

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extraction

Graph Generation

Methodology

Experimental Results

Conclusions

Infinity Mirror Test

Extracted ANCE Rules

Experimental Results

Infinity Mirror Test

bit.ly/satyaki-slides

Methodology

Conclusions

Current Graph H'

Next Graph \hat{H}

bit.ly/satyaki-slides

Methodology Experimental Results Conclusions

Infinity Mirror Test

Extracted ANCE Rules

Extracted ANCE Rules

Scalable and
Interpretable Graph
Modeling with
Graph Graphars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Graph Generation

Methodology

Experimental Results

Conclusions

Infinity Mirror Test

Wrapping Up

Extracted ANCE Rules

Current Graph H'

Next Graph Ĥ

Scalable and
Interpretable Graph
Modeling with
Graph Graphars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Graph Generation

Methodology

Experimental Results

Conclusions

Infinity Mirror Test

Wrapping Up

Next Graph Ĥ

Extracted ANCE Rules

bit.ly/satyaki-slides

Methodology Experimental Results Conclusions

Infinity Mirror Test

raph H'**STOP** Next Graph Ĥ

Scalable and
Interpretable Graph
Modeling with
Graph Graphers

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Graph Generation

Methodology

Experimental Results

Conclusions

Infinity Mirror Test

Wrapping Up

Extracted ANCE Rules

Language of Graphs Described by a Grammar

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extractio

Graph Generation

Methodology

Experimental Results

Conclusions

nfinity Mirror Test

Examining the Graph Growth Process

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extraction

Graph Generation

Methodology

Experimental Results

Conclusions

Infinity Mirror Test

Examining the Graph Growth Process

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extraction

Graph Generatio

Methodology

Experimental Results

Conclusions

Infinity Mirror Test

CABAM Graphs

Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

ntroduction

Methodology

Experimental Results
Conclusions

nfinity Mirror Test

Wrapping Up

CABAM Graphs

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extraction

Graph Generation

Experimental Results

Infinity Mirror Tes

Main Takeaways

• Simple and interpretable formalism from formal languages

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extra

Graph Generation

Methodology

Experimental Results

Conclusions

Infinity Mirror Test

Main Takeaways

- Simple and interpretable formalism from formal languages
- Scalable to medium-large graphs

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extra

Graph Generation

Methodology

Experimental Results

Conclusions

Infinity Mirror Test

Main Takeaways

- Simple and interpretable formalism from formal languages
- Scalable to medium-large graphs
- Faithful graph generation: topology and attribute

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Graph Generation

Methodology

Experimental Results
Conclusions

Infinity Mirror Test

Main Takeaways

- Simple and interpretable formalism from formal languages
- Scalable to medium-large graphs
- Faithful graph generation: topology and attribute

Shortcomings

• Dependence on the *dendrogram*

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extraction

Graph Generation

Methodology

Experimental Results
Conclusions

Infinity Mirror Test

Main Takeaways

- Simple and interpretable formalism from formal languages
- Scalable to medium-large graphs
- Faithful graph generation: topology and attribute

Shortcomings

- Dependence on the *dendrogram*
- Rule extraction process is non-deterministic

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extraction

Graph Generation

Methodology

Experimental Results
Conclusions

finity Mirror Test

Infinity Mirror Test for Duck Vader

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extraction

Graph Generatio

Infinity Mirror Tes

Motivation Methodology

Results

Conclusion

Infinity Mirror Test for Duck Vader

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Graph Generatio

Infinity Mirror Test

Motivation

Methodology Results

Conclusion

Infinity Mirror Test for Duck Vader

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Graph Generatio

Infinity Mirror Test

Motivation

Methodology Results

Conclusion

Wrapping Up

Infinity Mirror Test for Duck Vader

Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extractio

Graph Generatio

Infinity Mirror Test

Motivation Methodology

Results

Conclusion

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extractio

Graph Generation

Infinity Mirror Tes

Motivation Methodology

Results

Conclusion

Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extractio

Graph Generation

Infinity Mirror Tes

Motivation Methodology

Results

Conclusion

Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extractio

Graph Generation

Infinity Mirror Tes

Motivation Methodology

Results

Conclusion

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Graph Generation

Infinity Mirror Test

Motivation Methodology

Results

Conclusion

bit.ly/satyaki-slides

Motivation Methodology

Results

Conclusion

Infinity Mirror Test for Graph Models

Key Idea

Forcing a model to fit and re-fit the generated graphs amplifies biases

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Graph Generation

Infinity Mirror Test

Motivation

Methodology

Conclusion

Infinity Mirror Test for Graph Models

Key Idea

Forcing a model to fit and re-fit the generated graphs amplifies biases

Evaluation Plan

Compare H_i and H_0 to observe incremental degradation

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Graph Generation

Infinity Mirror Test

Motivation Methodology

Results

Conclusion

bit.ly/satyaki-slides

Infinity Mirror Test

Motivation Methodology

Results

Conclusion

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Infinity Mirror Test

Methodology

Results Conclusion

Wrapping Up

42

l 100 200 300 a b c d Degree

Degree

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Infinity Mirror Test

Motivation

Methodology Results

Conclusion

Wrapping Up

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extractio

.

Infinity Mirror Test

Motivation

Methodology Results

Conclusion

Wrapping Up

42

100 200 300 a b Degree

c a

Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

ntroduction

rammar Extractio

Infinity Mirror Test

Methodology Results

Conclusion

Wrapping Up

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extractio

Infinity Mirror Test

Motivation Methodology

Results Conclusion

Wrapping Up

First-order Graph Statistics

bit.ly/satyaki-slides

Infinity Mirror Test

First-order Graph Statistics

Scalable and
Interpretable Graph
Modeling with
Graph Graphars

bit.ly/satyaki-slides

ntroduction

Infinity Mirror Test

Motivation Methodology

Results

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Graphi Generation

Infinity Mirror Test

Motivation Methodology

Results

Conclusion

Wrapping Up

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Graph Generation

Infinity Mirror Test

Motivation Methodology

Results

Wranning I In

Interpretable Graph

Modeling with

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Graph Scheration

Infinity Mirror Test

Motivation Methodology

Results

Wranning U

Interpretable Graph

Modeling with

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Graphi Generation

Infinity Mirror Test

Motivation Methodology

Results

Wrapping U

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Graph Generation

Infinity Mirror Test

Motivation Methodology

Results

Takeaways

Main Takeaways

Confirms previously known biases in Kronecker graphs

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extractior

Infinity Mirror Test

Motivation Methodology

Results

Conclusion

Takeaways

Main Takeaways

- Confirms previously known biases in Kronecker graphs
- Uncovers unique distortion patterns in popular graph models

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extraction

Infinity Mirror Test

Motivation

Methodology

Results

Conclusion

Takeaways

Main Takeaways

- Confirms previously known biases in Kronecker graphs
- Uncovers unique distortion patterns in popular graph models
- A tool to design better, more parsimonious models

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Infinity Mirror Test

Motivation Methodology

Results

Conclusion

Summary

Vertex Replacement Grammars

- A new class of scalable, interpretable graph models
- Preserves both topology and attribute similarities

Interpretable Graph

Modeling with

Graph Grammars

bit.ly/satyaki-slides

ntroduction

Grammar Extraction

Infinity Mirror Test

Wrapping Up

Summary

Vertex Replacement Grammars

- A new class of scalable, interpretable graph models
- Preserves both topology and attribute similarities

Infinity Mirror Test

- A novel stress-test for graph models
- Reveals new biases prompting further investigation

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extractio

Infinity Mirror Test

Wrapping Up

What's Next

Hypergraph Grammars

- New extraction method for HRGs bypassing tree decompositions
- Should improve both stability and scalability

Hypergraph H

Line Graph of H

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Infinity Mirror Test

Wrapping Up

What's Next

Postdoctoral Fellow @ IU

- Work with Santo Fortunato on the MINERVA project
- Understanding the process of scientific discovery
- Studying the dynamics of citation and collaboration networks

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Introduction

Grammar Extraction

Infinity Mirror Test

Wrapping Up

The Core Idea

The best model is the one that leads to the best compression

$$\mathcal{M}^{st}=\operatorname{argmin}\left\{\left.\mathcal{L}\left(\mathcal{M}
ight)+\mathcal{L}\left(\mathcal{D}\left|\,\mathcal{M}
ight)
ight.
ight\}$$

- $\mathcal{L}(\mathcal{M})$ is the length of the model
- ullet $\mathcal{L}(\mathcal{D}\,|\,\mathcal{M})$ is the length of data compressed by the model

CNRG extraction and MDL

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

Comparing Graphs

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

Distribution Based

- Degree distribution
- PageRank centrality
- ***** ...

Topology Based

- Graph Edit Distance (GED)
- Graphlet Correlation Distance (GCD)
- DeltaCon Personalized PR
- ***** ...

Routers Degree Distribution

🕕 Original 🔸 Kronecker

Kemp-Tenenbaum (KT) Graph Grammars

Current Graph H' New Graph H^* (B) Example of rule application

replaced → new → boundary

Scalable and Interpretable Graph Modeling with Graph Grammars

$$(\mu = 2)$$

Scalable and
Interpretable Graph
Modeling with
Graph Grapmars

bit.ly/satyaki-slides

(1) Enumerate Subgraphs

- ullet Specify ${\it max}$ rule size μ
- Find connected sets of up to size μ

$$(\mu = 2)$$

(1) Enumerate Subgraphs

- ullet Specify ${\it max}$ rule size μ
- Find connected sets of up to size μ

Enumerating all connected size μ subgraphs in H

$$(\mu = 2)$$

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

(1) Enumerate Subgraphs

- Specify \max rule size μ
- Find connected sets of up to size μ

$$(\mu = 2)$$

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

(1) Enumerate Subgraphs

- Specify \max rule size μ
- Find connected sets of up to size μ

$$(\mu = 2)$$

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

(1) Enumerate Subgraphs

- Specify \max rule size μ
- Find connected sets of up to size μ

$$(\mu = 2)$$

(1) Enumerate Subgraphs

- Specify \max rule size μ
- Find connected sets of up to size μ

Enumerating all connected size μ subgraphs in H

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

(1) Enumerate Subgraphs

- Specify max rule size μ
- Find connected sets of up to size μ

$$(\mu = 2)$$

(1) Enumerate Subgraphs

(2) Best Rule Selection

Use MDL principle to find the rule which compresses the graph the most

(B) $\it R$ appears $\it 4$ times in Graph $\it H$

Scalable and Interpretable Graph Modeling with Graph Grammars

$$(\mu = 2)$$

(1) Enumerate Subgraphs

(2) Best Rule Selection

Use MDL principle to find the rule which compresses the graph the most

THS **RHS** (A) Best rule R

(B) $\it R$ appears $\it 4$ times in Graph $\it H$

$$(\mu = 2)$$

(1) Enumerate Subgraphs

(2) Best Rule Selection

Use MDL principle to find the rule which compresses the graph the most

(B) $\it R$ appears $\it 4$ times in Graph $\it H$

Scalable and Interpretable Graph Modeling with Graph Grammars

$$(\mu = 2)$$

(1) Enumerate Subgraphs

(2) Best Rule Selection

Use MDL principle to find the rule which compresses the graph the most

$$(\mu = 2)$$

- (1) Enumerate Subgraphs
- (2) Best Rule Selection
- (3) Extract Best Rule
- Match rule RHS in the graph
- Collapse matched nodes
- Repeat until the graph is empty

$$(\mu = 2)$$

- (1) Enumerate Subgraphs
- (2) Best Rule Selection
- (3) Extract Best Rule
- Match rule RHS in the graph
- Collapse matched nodes
- Repeat until the graph is empty

(B) Current graph H

Scalable and Interpretable Graph Modeling with Graph Grammars

$$(\mu = 2)$$

- (1) Enumerate Subgraphs
- (2) Best Rule Selection
- (3) Extract Best Rule
 - Match rule RHS in the graph
 - Collapse matched nodes
 - Repeat until the graph is empty

RHS

(A) Best rule R

THS

(B) Current graph H

$$(\mu = 2)$$

- (1) Enumerate Subgraphs
- (2) Best Rule Selection
- (3) Extract Best Rule
 - Match rule RHS in the graph
 - Collapse matched nodes
 - Repeat until the graph is empty

LHS RHS

(A) Best rule R

(B) Current graph H

$$(\mu = 2)$$

- (1) Enumerate Subgraphs
- (2) Best Rule Selection
- (3) Extract Best Rule
 - Match rule RHS in the graph
 - Collapse matched nodes
 - Repeat until the graph is empty

LHS RHS

(A) Best rule R

(B) Current graph H

$$(\mu = 2)$$

- (1) Enumerate Subgraphs
- (2) Best Rule Selection
- (3) Extract Best Rule
 - Match rule RHS in the graph
 - Collapse matched nodes
 - Repeat until the graph is empty

LHS RHS

(A) Best rule R

(B) Current graph H

Scalable and Interpretable Graph Modeling with Graph Grammars

bit.ly/satyaki-slides

5

Results from Synthetic Graphs

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

bit.ly/satyaki-slides

BUGGE

Rules

Most Frequent Rules Extracted from a PPI Network

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

CNRG Results

	EuCore		PolBlogs		OpenFlights	
	GCD	λ -dist	GCD	λ -dist	GCD	λ -dist
ChungLu	0.409	0.803	0.466	1.234	1.1116	0.614
HRG	0.229	8.091	1.196	4.407	1.2442	2.761
DC-SBM	0.180	2.057	0.262	4.186	0.8414	3.534
BTER	-	-	0.352	7.505	0.832	4.936
Kronecker	0.3164	11.802	1.302	14.31	1.83	10.459
CNRGE	0.233	4.969	0.212	4.276	0.2832	3.581

Scalable and Interpretable Graph Modeling with Graph Grammars

CNRG Results

Gnutella	
λ -dist	
0.42	
5	
-	
0.474	
5.96	
0.20	

Scalable and Interpretable Graph Modeling with Graph Grammars

Dendrogram Selection

Normalized Dasgupta Cost

Inverse Compression Ratio

Scalable and
Interpretable Graph
Modeling with
Graph Grammars

